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Abstract  

 
Global wave energy inventories have shown that the West Coast of Canada possesses one of the most energetic 
wave climates in the world, with average annual wave energy transports of 40-50 kW/m occurring at the 
continental shelf. With this energetic climate, there is an opportunity to generate significant quantities of 
electricity from renewable sources through the use of wave energy converter (WEC) technologies. However, a 
complete understanding of the influence of wave resource assessment methods on wave power production 
estimates is required to ensure power estimates provide the most accurate predictions possible. 

A variety of different methodologies are currently available to characterise and quantify the same fundamental 
wave resource information. This study investigates a regular wave time-series methods as well as the suggested 
TC-114, binned representative and spectrally partitioned irregular wave methods. The West Coast Wave Initiative 
(WCWI), within the Institute for Integrated Energy Systems at the University of Victoria, maintains both a series of 
buoys along the west coast of Vancouver Island and a highly resolved SWAN model for this region. These two data 
sources are analysed for 2013.  

The use of buoy data generally resulted in the prediction of an additional 5% in gross wave energy transport 
resource. Additionally, differing methodologies resulted in a 30% variation in the total extractable wave energy 
transport resource, when using the same input wave time-series. The methods specified in the International 
Electrotechnical Commission (IEC) Technical Committee 114 (IEC, 2014) Technical Specification  provided the 
largest estimates of the gross wave resource (2871.06 MWhrs), while use of spectral partitioning method reduced 
estimates to 2027.40 MWhrs. Given that these metrics are subsequently used to predict the annual power yields 
from WEC’s, these uncertainties in resource characterization result in significant variations in estimated power 
production and future WEC development project viability. 

Utilizing detailed WEC simulations conducted within the WCWI, specific device performance curves are used 
predict the total power produced during 2013, based on the various resource characterization methods. Estimated 
annual wave power production values varied between 301.52 MWhrs and 442.96 MWhrs, a difference of 47 %. 
WEC performance curves indicate that certain WECs are only able to capture wave energy within a certain 
frequency band. Hence, it is suggested that the spectrally partitioned methods of characterising the wave climate 
may provide a better estimate of the wave climate. Spectrally partitioning the wave spectrum results in annual 
power production estimates of 309.55 MWhrs and 354.29 MWhrs for SWAN and buoy data inputs respectively.  

Finally, a wave system seeding sensitivity study indicated there is still significant variability in the power production 
estimations for individual identical wave spectrums. The extent of this variability is WEC architecture dependent 
and is not consistent for all devices, and results in limited uncertainty when investigating annual power production. 
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Notation: 

The following symbols and abbreviations are used in this paper: 

   = i
th

 frequency band 

γ = JONSWAP peak-enhancement factor 

    = significant wave height 

  = wave height (regular waves) 

    = calculated wave height 

    = measured wave height 

   = n
th

 wave spectral moment 

   = variance density in the i
th

 frequency band 

   = energy period 

   = peak period 

  = wave period (regular waves) 

ER = root mean square relative error 

PTO = power take off 

DOF  = degrees of freedom 

WEC  = wave energy converter 

WCWI  = West Coast Wave Initiative 

HNE  =Heave Northing Easting 

ECMWF = European Centre for Medium Range Weather Forecasts 

COAMPS= Coupled Ocean Atmosphere Mesoscale Prediction System 

RMSE =Root Mean Square Error 

  



1 Introduction and Objectives 

For the wave energy conversion industry to mature, the need for highly resolved estimates of theoretical power 
production cannot be overstated. These estimations allow developers to estimate costs per unit power, utilities to 
plan for reserve costing and policy makers to estimate the spatial extent extents involved in WEC activities. The 
accuracy of these estimations are a function of two areas of research; wave energy resource assessments and 
wave energy converter (WEC) technology modelling. Currently, these research areas are generally treated as 
independent stages of a serial process.  

Firstly, wave resource assessments are generally completed without any knowledge of the WEC performance and 
provide an estimate of the gross resource available. Given that the waves arriving at the area of interest come 
from a multitude of different directions and frequencies, providing a simple single measure of the seastate is very 
complex. As a result, numerous methods have been proposed to quantify the gross resource. Given the substantial 
amount of data involved when looking at thousands of hours of wave resource data, it is necessary to “pack” this 
data into simplified metrics describing the annual wave climate; the standard metric is a bivariate distribution 
based on hourly significant wave height and energy period measurements. This “packing” procedure inherently 
introduces uncertainty to the wave resource assessment but is required to keep the data interpretation tractable. 

Next, numerical simulation studies of WEC dynamics are used to construct WEC performance matrices to cover the 
majority of reported seastates included in the bivariate histogram. In order to run a numerical time-series 
simulation of WEC dynamics, the bivariate histogram frequency domain metrics must be “unpacked” to create 
statistically identical sea surface elevations. This decomposition or “unpacking” procedure increases the 
uncertainty associated with the WEC performance matrix. Even with detailed knowledge of exact wave spectrum 
for each hour, uncertainty is introduced through the time-series simulations.  

Finally, theoretical annual power production estimates are created by overlaying the wave histogram with the WEC 
performance matrix. While this method will provide a reasonable estimate of annual power production, the 
uncertainties associated with “packing” and “unpacking” the wave resource data are significant.  

However, the estimation of annual power production should be based on an iterative, parallel process. While basic 
WEC feasibility studies could continue to use the standard metrics, significantly improved power production 
estimates can be immediately obtained by re-analyzing the wave resource assessment with detailed knowledge of 
the WEC power production curve.  In essence, through a detailed understanding of the WEC power production 
curve, it is possible to determine the amount of extractable wave energy transport is available to a specific WEC 
and limit the amount of unnecessary uncertainty which is inherently included in the gross wave resource 
assessment. These improved estimates will be used to inform the development of marine energy technical 
specifications and ensure power production estimates used to secure grants, financial investment and 
deployments sites provide good estimations of the final electricity produced.   

 

Figure 1: Amphitrite Buoy Location 

  



Global wave energy inventories have shown that the west coast of Canada possesses one of the most energetic 
wave climates in the world, with average annual gross wave energy transports of 40-50 kW/m occurring at the 
continental shelf. In order to capture the necessary data resolution required for advanced wave resource 
assessments, the West Coast Wave Initiative (WCWI) at the University of Victoria maintains a SWAN model, which 
covers the entire west coast of Vancouver Island (Robertson et al., 2013b), and a series of four Axys Technologies 
wave measurement buoys off the west coast of Vancouver Island, one of which is situated on Amphitrite Bank (see 
Figure 1).    

Additionally, the proposed iterative wave resource assessment requires detailed knowledge of the power 
production curves for individual WEC designs. As a result, this method is not WEC architecture independent and 
the extractable wave resource will vary between different WEC designs for the exact same location. For this study, 
the WEC model being tested is a two body axisymmetric point absorber. The model is based on the WaveBob, 
previous commercial WEC concept, and is a full scale version of the WEC used by Beatty et al. (Under review). See 
Figure 2.  

 

Figure 2: A schematic of the WEC setup and a dimensioned drawing 

 

Through detailed analysis of both the performance curves from the UVic concept WEC and the wave climate off 
the coast of British Columbia, the objective of this paper will achieved; to determine the influence of wave 
resource assessment methodologies on wave power estimates.  

 The paper proceeds as follows: Section 2 details the database of SWAN and buoy measurements used to quantify 
the wave conditions. In Section 3, the WEC technology modelling procedure and performance curves are 
introduced. Section 4 presents the details of the differing methodologies available to characterise the same wave 
resource.   In Section 5, detailed analyses of the wave data is completed and bivariate distributions for each 
method presents. Section 6 quantifies the impact of the differing wave resource methodologies on annual WEC 
power production estimates. Section 7 investigates whether WEC performance estimates are affected by 
numerical wave phase seeding, within the context of annual power production estimates. Finally, Section 8 
presents conclusions and recommendations for future work. 

 



2 Wave Database 

Numerous previous wave resource assessments have either used directly measured wave buoy data or numerical 
model data (García-Medina et al., 2014; Hiles et al., 2010) to quantify the wave climate at a specific location. This 
study will utilize both buoy measurements and SWAN model outputs to compare the performance of numerical 
model results against those from buoy measurements, and comment on the applicability of using numerical results 
for wave resource assessments. 

The Amphitrite Bank buoy was deployed in 2012, in approximately 50m of water, at 48° 52.8’N, 125° 36.9’W. 
Amphitrite Bank has often been cited as a high interest location for future wave energy conversion (Cornett, 2008). 
The buoy measures the full directional frequency spectrum with 121 frequency bins and 5° directional resolution.  

In addition, a complete numerical hindcast of wave conditions at the Amphitrite Bank Buoy location over the 
period from 2004 – 2013 was completed (Robertson et al., 2013b). The numerical hindcast utilized the Simulation 
WAves Neashore (SWAN) model and input boundary conditions from both the European Centre for Medium Range 
Weather Forecasts (ECMWF) and the US Navy Fleet Numerical Meteorology and Oceanography Centre (FNMOC). 
In order to appropriately model the wave conditions on Amphitrite Bank, the computational grid spacing was 
reduced to approximately 150m spatial resolution across the bank. 

In order to provide a full year of buoy and SWAN data for further analysis, the mean annual wave energy transport, 
from the 10 year hindcast at Amphitrite Bank, was calculated. By minimizing the difference between the mean 10-
year wave energy transport values and the individual annual wave energy transport values, it was determined that 
2013 well represented the long term wave climate for the British Columbia coast.  

3 WEC Technology Modelling 

The architecture of differing WEC’s vary dramatically depending on which wave physical phenomenon they hope 
to extract power from; wave-induced particle motions, sea surface elevation changes or transient pressure 
differentials. In order to apply more advanced wave resource assessment methods, which differentiate between 
the gross wave resource and the WEC-specific extractable wave resource, detailed knowledge of the WEC is 
required.  

The WCWI WEC utilizes the time varying sea surface elevation and consists of two self-contained concentric 
bodies, a torus and a spar, which move relative to each other along their combined axisymmetric axis. Operating 
between them is a power take off (PTO) that produces force opposing and in proportion to the relative velocity. 
The system is deployed in 50 m of sea water and is moored with 3 mooring lines, evenly spaced and attached to 
the spar at its centre of gravity. The cables are based on 81 m of chain that are anchored to the sea floor, 73 m 
horizontally, from the centre of the WEC. 

 

Table 1: Standard parameters defining the WEC tested. 

Parameters Unit Value 

Spar Mass Kg 1646875 

Spar Moments of Inertia, Ixx, Iyy, Izz Kgm
2
 5656250, 5656250, 648437.5 

Float Mass Kg 201406.25 

Float Moments of Inertia, Ixx, Iyy, Izz Kgm
2
 5785156.25, 5785156.25, 1445312.5 

Chain Density Kg/m
3
 7700 

Chain effective diameter m 0.03655 

Chain Axial rigidity N 4.2x10
8
 

PTO damping coefficient Ns/m 1625 000 

 



The WEC is simulated using the software package ProteusDS (DSA, 2013). ProteusDS is a non-linear, time domain 
solver that operates in 6 DOF. The software’s physics model has been extensively validated and includes non-linear 
cable dynamics, interconnections of articulate hulls and mooring lines, PTO dynamics, viscous drag forces and 
wave radiation and diffraction loading.  Wave hydrodynamic information has been calculated in the boundary 
element method code, WAMIT and used within the ProteusDS environment (Bailey et al., 2014; DSA, 2013). The 
parameters used in the model are presented in Table 1, and a dimensioned drawing and a schematic of the 
numerical simulation are presented in Figure 2.  

WEC power extraction is non-linear across the frequency bands and depends on the natural frequency of the 
bodies, PTO interactions, moorings, device control strategies and a number of other factors. As shown in Figure 3, 
the performance of the considered WEC is maximised at ~ 9 seconds and almost no power is produced when the 
wave periods are higher than 20 seconds or below 3 seconds. It is noted that advanced power take off (PTO) 
control or architecture optimization will alter the WEC performance curve.   

 

Figure 3: WCWI WEC Performance Curve 

In order to provide the required performance matrices for the WCWI device, ProteusDS simulations for every 
seastate were required. For time-series analysis methods, regular waves of known height and period were 
simulated within the ProteusDS environment. WEC power production for each run was determined by averaging 
power production values over 5 wave periods, once WEC production had reached equilibrium.  

Table 2: Sample WCWI WEC performance matrix 

      
Wave Energy Period (Te) 

    

 
3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 

0.25 0 0 0 0 0 0 0 0 0 0 0 0 

0.75 0 0 5651 9387 9909 8831 9800 6949 5887 0 0 0 

1.25 0 0 16757 25404 28667 27518 22628 20737 16990 0 0 0 

1.75 0 0 33910 51863 57317 53862 59561 39110 29917 19668 0 0 

2.25 0 0 0 64253 57317 53862 59561 39110 42273 41279 0 0 

2.75 0 0 0 0 138211 74185 122668 60803 80961 61020 0 0 

3.25 0 0 0 0 168478 159038 144908 97735 92193 68936 0 0 

3.75 0 0 0 0 0 186089 154950 158663 138447 0 0 0 

4.25 0 0 0 0 0 0 200327 169167 143914 0 0 0 

4.75 0 0 0 0 0 0 254913 260286 0 0 0 0 

5.25 0 0 0 0 0 0 0 0 0 0 0 0 

5.75 0 0 0 0 0 0 0 0 0 0 0 0 

Wave Height 
            

For spectral wave analysis methods, the wave height and period information included in bivariate histograms was 
to synthesize a wave time series. The phase of the discrete waves was randomly chosen and varied between all 
seastates investigated. Maximum and minimum spectrum frequencies included in the simulation were    ⁄  and 

    ⁄  respectively. The number of discrete waves was chosen to ensure that the sea surface repeated every 600 s. 

Simulations were run for 640 seconds and the first 40 seconds were removed from the analysis due to initial 
condition affects. A sample WEC performance matrix is presented in Table 2. 



4 Wave Resource Quantification Methods 

The oldest method of analysing waves is through the analysis of a sea-surface time-series (McCowan, 1894), and 
provides an initial estimation of wave characteristics and breaking conditions. This method does provide an 
estimate of the annual wave climate.  The WCWI wave measurement buoys collect a vast suite of wave data 
including both frequency-direction wave spectrums and the vertical heave of the wave buoy. This heave 
information is synthesized from rate gyro and accelerometer data and calculated at 1.75 Hz, or every 0.57 seconds.  
Through a standardized zero-up crossing analysis (Mizuguchi, 1982) of the resulting surface elevation time-series, 
is possible to identify individual wave heights and periods. Assuming linear wave theory, it is possible to determine 
exactly how many waves, of specific wave height and period waves, would impinge on a WEC in a given year by 
creating a wave histogram of individual wave heights ( ) and zero-crossing periods ( ). The assumption of linear 
theory results in the non-linear effects of wave-wave interactions to be omitted. 

In order to address the limitations of surface time series analysis, spectral analysis of waves became the dominant 
method of studying wave conditions. Spectral analysis is able to represent the entire frequency and direction 
distribution of waves, at any location over a given time frame, at the expense of the individual wave phase 
information. However, the spectral analysis includes the necessary information to quantify both the gross and 
extractable wave climates. While the wave energy industry is yet to publically release a standardized method to 
quantify a wave resource,  significant effort has been undertaken by the International Electrotechnical Commission 
(IEC) Technical Committee 114 (IEC, 2014) to produce a draft technical specification. This draft document initially 
recommends calculating the wave spectral moments according to Eq. (1), using the full directional frequency 
spectrum from either the SWAN model or the buoy data.   

    ∑   
                                                                                           (1) 

 
Next, the energy period (  ) and significant wave height (   ) for each spectrum was calculated using Eq. (2) and 
Eq. (3) below: 

    
   

  
                                                                                           (2) 

         √                                                                                  (3) 

 
Finally, these results should be used to create a bivariate histogram of     and   , using 0.5 m wave height and 1 
second energy period bins. The numeric values presented within each bin represent the number of hours per 
annum each seastate occurs. This “packing” procedure results in a loss of fidelity due to loss of information about 
the frequency based variance spread of individual spectrum. As a result, it is generally assumed that each 
histogram bin can be represented with a single peaked spectrum with a JONSWAP shape.  

Initial improvements can be made by addressing the assumption of a JONSWAP spectrum shape. By binning the 
entire wave spectrums (rather than just the of     and    parameters) into the appropriate histogram bins, an 
aggregate wave spectrum can be created by calculating the mean variance density within each frequency band, 
and then constructing an individual representative spectrum for each histogram bin. In order to determine the 
best fit theoretical spectrum for each representative aggregate spectrum, the peak enhancement function (γ) from 
the JONSWAP spectral formation (Eq. (4)) can be altered until the root mean square error (RMSE) between the 
measured and synthesized spectrum is minimized. For a standard JONSWAP spectrum γ = 3.3, while γ = 1 for a PM 
spectrum. 
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Unfortunately, both proposed gross wave resource methods still assume a single peaked wave spectrum and 
include the variance density across all frequency bands in the calculation of     and    parameters. Given that the 
energy period does not represent the true peak of a physical wave spectrum, it will provide inaccurate 
representations of the wave conditions in multi-modal seastates. As shown in Figure 4, these methods can result in 



an over prediction of the maximum variance density level and a significant translation of the spectrum along the 
frequency axis.  

 

Figure 4: Measured and Histogram Equivalent 
Spectrum 

 

Figure 5: Power Production Spectrum 

 

For WEC developers, detailed information about the true extractable wave resource, considering a specific device 
power production curve from their device, is more important than gross wave resource assessments. Given that 
the majority of WEC production curves are single peaked and only extract power across narrow band of frequency 
values (Figure 3), any estimates of WEC power production should be based on distinct measured wave systems, 
rather than those mathematically created through use of the wave energy period parameter. Wave spectral 
partitioning has been ongoing in oceanography for over two decades (Boukhanovsky and Guedes Soares, 2009; 
Gerling, 1992) but is yet to be applied to the WEC industry. The partitioning of the full directional wave spectra into 
distinct wave systems greatly improves estimates of both the extractable resources and the associated theoretical 
power production. Through the decomposition process, it is possible to eliminate the need for the energy period 
parameter and extract both the individual wave system with the highest energy content and the wave system with 
the greatest overlap with the WEC performance curve. For a detailed review of spectral partitioning algorithms, 
see Gerling (1992). As shown by the shaded portion in Figure 5, the inclusion of the distinct spectral peak at ~ 0.30 
Hz doesn’t overlap with the normalized WEC power production curve, should not be included in the estimates of 
the extractable wave resource and only introduces additional uncertainty when using gross resource assessment 
methods. 

In order to minimise the number of variables associated with wave resource quantification methods, the current 
study focuses exclusively on non-directional wave spectrums. While this does simplify the problem greatly, it does 
also inherently exclude the effects of directionality on WEC performance. It is acknowledged that this could play a 
major role for directionally preferential WEC designs, yet the WEC used in this study is an axisymmetric point 
absorber and hence is less influenced by directional wave effects.  

5 Wave Data Analysis 

5.1 Time-Series Evaluation 
Table 14 presents a detailed histogram of individual wave heights and periods, based on the 2013 Amphitrite bank 
wave buoy data. The zero-crossing heave time series methodology indicates optimizing WECs to perform in wave 
heights below 0.5m with a wave period of approximately 3.5 seconds (485 934 occurrences). While feasibility of 
designing WEC’s for this small most frequent wave climate may be questionable, the third most frequent wave 
state, occurring at 0.75m wave height and 7.5 second wave period, may provide a better design guideline. 

In additional to providing a general overview of the wave climate for power production estimates, a time-series 
analysis directly captures individual extreme waves. Extreme waves are of considerable interest when investigating 
WEC survivability and extreme loading cases. The largest wave captured through time-series analysis was 
measured at 13.5 m at 16.5 seconds (eliminated from the table due to space constraints). While this largest wave 



may not be the most destructive, a time-series decomposition allows for the extraction of the steepest (wave 
height/wavelength) waves in each frequency band and provides design constraints for future WEC dynamic 
analysis.   

5.2 Standard Spectral Methods (TC-114 Spec) 
Following the procedure outlined in the TC-114 Technical Specification, SWAN and buoy results were used to 
create bivariate histograms with 1 second energy period and 0.5 m wave height bins. See Table 3 for the SWAN 
model and Table 4 for the wave buoy results. The values presented in each bin represent the number of hours per 
annum each seastate occurs. 

It is immediately evident that the SWAN and buoy data result in slightly different representations of the annual 
wave climate. This can be attributed to a number of factors. Firstly, the frequency resolution varies between the 
SWAN (36 frequency bands) and buoy (121 frequencies) data. Secondly, the SWAN model is additionally limited by 
the temporal resolution of the model boundary conditions; the ECMWF model is produced every 6 hrs, while the 
Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) winds are produced every 3 hours. Higher 
temporal resolution would be required to capture the short term intra-hour effects of wind gusts and localized 
wave height changes. Finally, the SWAN model has been shown to emphasize the low-frequency components of 
the wave spectrum (Holthuijsen, 2008), while the wave buoys are more affected by localised “noise” due high 
frequency wind waves.   

While the distribution of waves within the histograms may be different, the 5 most frequent wave conditions (bins) 
are separated by only a single second. The energy period shift toward higher periods (lower frequencies) for the 
SWAN model was expected. 

Table 3: Standard SWAN Wave Histogram 

       
Wave Energy Period (Te) 

        

 
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 

0.25 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.75 0 0 0 0 0 0 9 108 93 84 0 0 0 0 0 0 0 

1.25 0 0 0 0 0 0 108 627 1002 810 408 102 3 0 3 0 0 

1.75 0 0 0 0 0 0 18 528 618 654 366 150 39 33 3 3 0 

2.25 0 0 0 0 0 0 0 90 183 384 366 246 57 18 6 24 12 

2.75 0 0 0 0 0 0 0 15 66 204 219 174 117 39 3 0 0 

3.25 0 0 0 0 0 0 0 0 21 105 120 114 48 30 21 0 0 

3.75 0 0 0 0 0 0 0 0 9 45 45 45 48 0 0 0 0 

4.25 0 0 0 0 0 0 0 0 3 21 15 27 6 0 0 0 0 

4.75 0 0 0 0 0 0 0 0 0 0 3 18 3 0 0 0 0 

5.25 0 0 0 0 0 0 0 0 0 0 3 3 6 0 0 0 0 

5.75 0 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 

Wave Height (Hmo) 
                Table 4: Standard Wave Buoy Histogram 

      
Wave Energy Period 

        

 
3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 

0.25 0 0 0 0 0 1 8 5 0 0 0 0 0 0 0 0 

0.75 0 7 65 194 306 274 253 123 41 4 1 0 0 0 0 0 

1.25 0 4 149 521 682 488 347 168 87 15 5 7 2 0 1 0 

1.75 0 0 28 219 389 418 238 143 105 47 12 12 0 0 2 0 

2.25 0 0 0 75 195 299 371 237 118 51 18 3 3 1 0 0 

2.75 0 0 0 15 84 164 198 150 107 64 19 3 6 3 1 0 

3.25 0 0 0 2 41 105 158 83 60 50 17 6 6 4 0 0 

3.75 0 0 0 0 4 47 83 57 37 17 13 4 3 2 1 2 

4.25 0 0 0 0 1 24 49 37 39 13 8 4 1 0 1 0 

4.75 0 0 0 0 0 6 29 28 25 11 3 0 0 2 2 0 

5.25 0 0 0 0 0 0 6 17 5 5 3 1 0 1 0 0 

5.75 0 0 0 0 0 0 3 8 8 6 12 1 0 1 0 0 

6.25 0 0 0 0 0 0 0 3 0 3 2 3 0 0 0 0 

6.75 0 0 0 0 0 0 0 1 0 1 2 3 2 0 0 0 

7.25 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 

7.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Wave Height (Hmo) 
               



Given that the standard wave histogram requires knowledge of only significant wave height (   ) and energy 
period (  ) parameters, the histograms provide no clear indication of whether a JONSWAP, Pierson-Moskowitz 
(PM), TMA or other spectrum are more relevant for accurately recreating the frequency distribution of the wave 
energy within each bin. As a result, the JONSWAP spectrum is often assumed (Folley et al., 2012; Robertson et al., 
2013b), but the power production effect of this assumption is generally neglected. 

Finally, the distribution of wave heights and periods of the most frequent waves conditions presented in Table 4 is 
considerably different from those determined by using a time-series analysis of the same dataset (Table 14). The 
impact on power production estimates from these differing distributions is very important to the wave energy 
conversion industry. 

5.3 Binned Representative Wave Spectra 
 

In order to determine the best fit wave spectral shape, an iterative procedure was used. 60 different JONSWAP 
spectrums were created by varying the peak-enhancement factor (γ) between 1 and 7, in 0.1 increments. The best 
fit representative spectrum was determined by minimizing the root mean square error (RMSE) between the 
aggregated spectrum data and the representative JONSWAP spectrum using γ. Table 5 and Table 6 present the 
best fit γ value for each histogram bin.  

Table 5: Gamma values for representative spectrum (SWAN data) 

        
Wave Energy Period (Te) 

         0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 

0.25 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.75 0 0 0 0 0 0 1.4 1 1 1 0 0 0 0 0 0 0 

1.25 0 0 0 0 0 0 1 1 1 1 1 1.1 1.3 0 1.8 0 0 

1.75 0 0 0 0 0 0 1 1 1 1 1 1 1.4 1.3 1.3 1.8 0 

2.25 0 0 0 0 0 0 0 1 1 1 1 1 1.1 1.3 1.5 2 2.3 

2.75 0 0 0 0 0 0 0 1.2 1 1 1 1 1.1 1.1 1.4 0 0 

3.25 0 0 0 0 0 0 0 0 1.2 1 1 1 1.3 1.2 1.6 0 0 

3.75 0 0 0 0 0 0 0 0 1 1 1 1 1.3 0 0 0 0 

4.25 0 0 0 0 0 0 0 0 1.2 1 1 1.1 1.6 0 0 0 0 

4.75 0 0 0 0 0 0 0 0 0 0 1 1 1.6 0 0 0 0 

5.25 0 0 0 0 0 0 0 0 0 0 1 1.2 1.4 0 0 0 0 

5.75 0 0 0 0 0 0 0 0 0 0 0 1.3 1.3 0 0 0 0 

Wave Height (Hmo) 
                 

Table 6: Gamma values for representative spectrum (buoy data) 

     
Wave Energy Period (Te) 

           3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 

0.25 0 0 0 0 0 6.5 4.6 4.6 0 0 0 0 0 0 0 0 

0.75 0 1.5 1 1 1 1 1 1 1.2 1.7 3 0 0 0 0 0 

1.25 0 1.1 1 1 1 1 1 1 1.5 1.7 1 1.3 2.9 0 5.4 0 

1.75 0 0 1 1 1 1 1 1 1 1.6 1.3 1.3 0 0 1 0 

2.25 0 0 0 1.2 1 1 1 1 1.2 1.5 1.4 1.6 1.8 4.7 0 0 

2.75 0 0 0 1.3 1 1 1.1 1 1.3 1.8 1.8 1.8 1.7 1.9 2.1 0 

3.25 0 0 0 3 1 1 1.1 1 1.5 2 1.9 2 2.3 2.8 0 0 

3.75 0 0 0 0 2.6 1.1 1.1 1.1 1.5 1.6 2.5 2 2.3 4.2 5.7 6 

4.25 0 0 0 0 2.2 1.2 1.4 1.2 1.5 1.9 1.8 3.1 3.5 0 5.3 0 

4.75 0 0 0 0 0 1.9 1.7 1.2 1.4 2.1 2.7 0 0 7 4.1 0 

5.25 0 0 0 0 0 0 2.3 1.5 1.1 2.1 1.8 1.3 0 7 0 0 

5.75 0 0 0 0 0 0 2.7 1.9 1.7 1.5 2.2 2.3 0 5.4 0 0 

6.25 0 0 0 0 0 0 0 1.2 0 1.2 1.4 2.1 0 0 0 0 

6.75 0 0 0 0 0 0 0 1.2 0 6.2 2.9 2.4 2.7 0 0 0 

7.25 0 0 0 0 0 0 0 1.2 1 4.4 0 0 0 0 0 0 

7.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Wave Height (Hmo) 
                



Given that a standard JONSWAP spectrum requires a gamma value of 3.3, the tables indicate that a JONSWAP 
spectrum is a poor choice for numerically modelling the sea-states off the west coast of Canada. A gamma value of 
1, the most dominant value in tables, represents a fully developed seastate or a PM spectrum. Therefore, a PM 
spectrum is more representative of the actual seastates off the BC coast and should be used for all future studies 
where assumptions of spectral shape are required. 

Additionally, the comparison of the two tables below indicates an increasing difference between the SWAN and 
the buoy representative spectrums. While the most frequent wave height/wave period histogram bins vary only 
slightly between the buoy and SWAN data, the representative sea state γ values vary substantially. 

In order to quantify the relative difference between the measured aggregated spectrum and the synthesised 
representative spectrum, the  Root Mean Square Relative Error (ER) was calculated using Eq. 5 (Rattanapitikon and 
Shibayama, 2000; Robertson et al., 2013a):   

      √∑ (       )
  

   ∑    
  

   ⁄                                                        (5) 

 

As shown in Table 7 and Table 8 below, the relative errors between these representative spectrums and the 
aggregated spectrum can still be substantial. The average respective ER values for the fitted SWAN and buoy data 
are 25% and 27%. However, these are significantly improved from 66% and 51% resulting from the assumption of a 
simple JONSWAP spectrum with SWAN and buoy data respectively. 

 
Table 7: ER between the aggregate spectrum and the representative spectrum (SWAN Model) 

        
Wave Energy Period (Te) 

       

 
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 

0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.75 0 0 0 0 0 0 56 62 31 28 0 0 0 0 0 0 0 

1.25 0 0 0 0 0 0 49 51 65 59 39 24 17 0 19 0 0 

1.75 0 0 0 0 0 0 27 38 43 31 32 27 14 8 37 30 0 

2.25 0 0 0 0 0 0 0 30 35 27 23 22 17 12 22 29 23 

2.75 0 0 0 0 0 0 0 13 29 21 19 20 13 7 13 0 0 

3.25 0 0 0 0 0 0 0 0 11 23 23 23 7 12 22 0 0 

3.75 0 0 0 0 0 0 0 0 15 23 24 16 10 0 0 0 0 

4.25 0 0 0 0 0 0 0 0 19 18 23 9 9 0 0 0 0 

4.75 0 0 0 0 0 0 0 0 0 0 22 24 11 0 0 0 0 

5.25 0 0 0 0 0 0 0 0 0 0 44 12 9 0 0 0 0 

2.75 0 0 0 0 0 0 0 0 0 0 0 13 14 0 0 0 0 

Wave Height (Hmo) 
                 

Table 8: ER between the aggregate spectrum and the representative spectrum (buoy data) 

          
Wave Energy Period (Te) 

    

 
3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 

0.25 0 0 0 0 0 65 62 61 0 0 0 0 0 0 0 0 

0.75 0 46 61 39 42 92 57 44 38 39 32 0 0 0 0 0 

1.25 0 55 40 38 45 37 37 26 10 20 48 35 27 0 45 0 

1.75 0 0 31 21 29 22 21 39 21 11 16 17 0 0 84 0 

2.25 0 0 0 15 24 23 17 14 17 14 27 35 41 20 0 0 

2.75 0 0 0 20 20 24 11 21 18 19 25 31 35 35 39 0 

3.25 0 0 0 25 27 8 10 11 21 19 18 28 15 31 0 0 

3.75 0 0 0 0 29 9 10 22 23 15 11 40 30 15 19 26 

4.25 0 0 0 0 29 18 8 13 22 16 15 14 36 0 39 0 

4.75 0 0 0 0 0 20 21 13 17 20 39 0 0 20 42 0 

5.25 0 0 0 0 0 0 15 26 19 24 10 40 0 37 0 0 

5.75 0 0 0 0 0 0 13 22 13 21 17 18 0 20 0 0 

6.25 0 0 0 0 0 0 0 56 0 21 22 15 0 0 0 0 

6.75 0 0 0 0 0 0 0 39 0 9 23 17 33 0 0 0 

7.25 0 0 0 0 0 0 0 23 42 21 0 0 0 0 0 0 

7.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Wave Height (Hmo) 
               



 

5.4 Spectral Partitioned Methods 
For this study, a wave system was considered to be discrete and independent if the following criteria were met: 
the ratio of discrete peak frequencies was greater than 1.25, the difference between peak directions was greater 
than 20° and the wave modes weights’ greater than a factor of 10 (Gerling, 1992). 

As shown in Table 9 and Table 10, the histogram for the spectrally partitioned wave systems provides a 
significantly different representation of the wave climate from those presented in Table 3 and Table 4. 
Immediately noticeable is the reduction in the reported significant wave height, as expected due to the elimination 
of non-extractable variance densities. The fitted gamma values vary slightly and suggest using a PM spectrum; with 
the mean values of 1.07 and 2.03 for the SWAN and buoy results respectively. 

 Table 9: Spectrally partitioned wave histogram (SWAN model) 

       
Wave Energy Period (Te) 

      

 
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 

0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.75 0 0 0 0 0 0 0 94 174 171 100 26 0 0 0 

1.25 0 0 0 0 0 0 48 452 1047 753 662 265 29 0 0 

1.75 0 0 0 0 0 0 0 359 575 778 426 203 84 42 6 

2.25 0 0 0 0 0 0 0 58 165 307 391 326 81 0 0 

2.75 0 0 0 0 0 0 0 0 0 210 252 178 129 0 0 

3.25 0 0 0 0 0 0 0 0 19 100 0 129 0 0 0 

3.75 0 0 0 0 0 0 0 0 10 42 48 0 0 0 0 

4.25 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 

4.75 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 

5.25 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 
Wave Height (Hmo) 

              

Table 10: Spectrally partitioned wave histogram (Buoy) 

       
Wave Energy Period (Te) 

       

 
3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 

0.25 6 0 0 3 13 23 36 39 36 10 3 0 0 0 0 0 

0.75 74 84 191 494 933 846 869 617 310 123 26 10 0 0 0 0 

1.25 10 13 310 1072 1647 1399 1089 636 352 181 32 23 10 13 3 6 

1.75 0 0 45 465 963 1066 853 426 310 249 65 26 26 6 0 0 

2.25 0 0 0 152 468 749 1011 778 359 239 74 23 10 13 6 3 

2.75 0 0 0 39 207 362 575 388 384 200 74 13 23 6 3 10 

3.25 0 0 0 0 94 310 420 265 162 145 87 16 23 10 3 3 

3.75 0 0 0 0 13 126 236 174 120 48 42 10 6 0 0 3 

4.25 0 0 0 0 0 58 145 113 110 52 36 0 10 0 0 3 

4.75 0 0 0 0 0 19 65 84 74 32 19 0 0 0 0 0 

5.25 0 0 0 0 0 0 23 55 16 13 0 0 0 0 0 0 

5.75 0 0 0 0 0 0 6 29 23 19 0 0 0 0 0 0 

6.25 0 0 0 0 0 0 0 6 6 0 19 0 0 0 0 0 

6.75 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 

7.25 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 
Wave Height (Hmo) 

                 

The ER values presented in Table 11 and Table 12 confirms that the fitted spectrums are better able to reproduce 
the spectrally partitioned wave systems than the full spectrum. This reduction in the input wave spectrum 
uncertainty will inherently be transferred to reducing the uncertainty in power prediction estimates. 

 

 

 

 



Table 11: ER values between spectrally partitioned and fitted theoretical spectrum (SWAN) 

       
Wave Energy Period (Te) 

      

 
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 

0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.75 0 0 0 0 0 0 0 32 26 23 29 30 0 0 0 

1.25 0 0 0 0 0 0 26 17 20 30 25 21 15 0 0 

1.75 0 0 0 0 0 0 0 28 17 24 27 23 8 10 14 

2.25 0 0 0 0 0 0 0 26 26 16 13 17 19 0 0 

2.75 0 0 0 0 0 0 0 0 0 21 15 19 10 0 0 

3.25 0 0 0 0 0 0 0 0 11 19 0 26 0 0 0 

3.75 0 0 0 0 0 0 0 0 17 21 21 0 0 0 0 

4.25 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 

4.75 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 

5.25 0 0 0 0 0 0 0 0 0 0 31 0 0 0 0 

Wave Height (Hmo) 
              

Table 12: ER values between spectrally partitioned and fitted theoretical spectrum (Buoy) 

       
Wave Energy Period (Te) 

       

 
3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 

0.25 48 0 0 37 44 50 60 24 29 41 44 0 0 0 0 0 

0.75 45 87 32 11 11 21 28 43 17 16 19 15 0 0 0 0 

1.25 43 24 15 31 21 19 23 27 11 23 21 47 38 36 29 29 

1.75 0 0 21 19 12 8 15 12 12 10 14 30 14 31 0 0 

2.25 0 0 0 20 15 11 13 13 15 16 29 17 24 26 34 21 

2.75 0 0 0 25 19 13 12 12 13 12 31 18 19 20 35 28 

3.25 0 0 0 0 26 16 10 14 13 10 24 27 13 33 35 34 

3.75 0 0 0 0 24 12 15 18 18 15 25 22 38 0 0 37 

4.25 0 0 0 0 0 29 11 13 15 12 20 0 27 0 0 35 

4.75 0 0 0 0 0 35 10 15 19 11 19 0 0 0 0 0 

5.25 0 0 0 0 0 0 22 33 18 11 0 0 0 0 0 0 

5.75 0 0 0 0 0 0 34 34 18 17 0 0 0 0 0 0 

6.25 0 0 0 0 0 0 0 30 21 0 21 0 0 0 0 0 

6.75 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 

7.25 0 0 0 0 0 0 0 32 46 0 0 0 0 0 0 0 

Wave Height (Hmo) 
                 

6 Annual Wave Energy Capture Results 

The wave energy conversion industry is indentured to provide highly resolved and accurate estimations both the 
amount of power their device will produce and the costs associated with that power prior to widespread adoption. 
Without accurate predictions of both power and cost, WEC developers will struggle to both find the necessary 
capital investment and gain traction with the local electricity utilities. The gross wave resource has been 
deconstructed according to numerous methods in the previous section, yet impact on the estimated power 
production is of primary important to the wave energy conversion industry.  

In order to ease the computational effort required to numerically model every seastate bin created in the previous 
sections, only histogram bins with more than 6 or 24 hours of annual occurrence, for the regular and irregular 
wave methods respectively, were included in the following discussion. This will result in a slight underestimation of 
the final energy production, yet will not influence the relative power production estimates between the different 
resource characterisation methods.  

Irregular wave spectrums are traditionally defined by a significant wave height and peak wave period. In contrast, 
the TC-114 technical specification calls for all histograms use to use energy period in an effort to account for 
double peaked wave spectra. Hence, prior to numerical simulation, a representative peak period was created for 
every histogram bin based on the spectral shape, spectrum peakness parameter (γ) and energy period value.   

 



Table 13 details the power production estimates for the various methods discussed in Section 3.  

Table 13: Annual Power Production Estimates 
Method Wave Type Data Source Wave Power (MWhr) Extracted Power (MWhr) Efficiency 

Time Series Regular Waves Buoy 2682.56 479.87 0.18 

TC-114  JONSWAP Spectrum SWAN 2723.16 417.55 0.15 

    Buoy 2613.73 434.37 0.17 

TC-114  PM Spectrum SWAN 2871.06 419.03 0.15 

    Buoy 2755.05 442.96 0.16 

Bin Representative Fitted SWAN 2867.37 430.45 0.15 

    Buoy 2738.94 418.71 0.15 

Spectrally Partitioned Fitted SWAN 2027.40 301.52 0.15 

    Buoy 2029.25 326.07 0.16 

6.1 Time-Series Evaluation  
Given the extensive spread of the wave conditions presented in Table 14, regular wave ProteusDS simulations 
were conducted only for histogram bins which featured more than 6 hours of annual occurrence. Power estimates 
for individual waves were determined by taking the mean production over 5 wave periods, once the device has 
reached equilibrium. 

As shown in Table 13, using the time series methodology on the wave buoy data predicts 479.87 MWhrs of annual 
wave power production. The time-series method could only be applied to the buoy data since SWAN is not a 
phase-resolved model. The time-series method predicts ~15% more power than the mean of the power production 
from spectral methods. 

6.2 Standard Spectral Methods (TC-114 Spec) 
As shown in Table 13, there is considerable variation in the power production estimates between both the SWAN 
vs. buoy data sources and the JONSWAP vs. PM spectrum assumptions. Regardless of spectral shape assumptions, 
the measured wave buoy data consistently results in approximately 5% of additional power production when 
compared against the SWAN model data. This can be attributed to the limitations of SWAN being able to simulate 
extreme wave events, as visualized by the higher     values in Table 4. 

The assumption of a JONSWAP or PM spectral shape results in only minor variation in the final annual power 
output (~ 1%), indicating that assumptions of JONSWAP shape are valid for annual power production estimates 
using the TC-114 specification. 

6.3 Binned Representative Wave Spectra 
Interestingly, by eliminating assumptions of spectral shape within histogram bins and using the best fitting γ values 
in Table 5 and Table 6, the power production estimates using buoy data where lower than when using the SWAN 
data (430.45 MWhr vs. 418.71 MWhr respectively). This contrasts the trend of SWAN data generally providing 
lower estimates of power production. This could be explained by the volatile nature of the high frequency noise 
associated with buoy measurements. Once aggregated, the effect of this high frequency noise is minimised. 
Regardless, the relative difference is between the two resource measurement methods is small ( ~ 3%). 

6.4 Spectral Partitioned Methods 
By partitioning the wave spectrum, and only using the peak with the majority of the incident wave energy, the 
wave histograms presented in Table 9 and Table 10 provide a more refined estimate of the extractable wave 
energy transport. 

As shown in Table 13, the spectrally partitioned methods result in lower power production estimates of 301.52 
MWhrs and 326.07 MWhrs for SWAN and buoy data respectively. These power production estimates are 
inherently lower due to the elimination of unextractable wave energy in gross wave resource assessment methods 
(such as the standard TC-114 method). The results indicate the use of gross wave resource assessment methods 
tend to overestimate the WEC power production by ~33% for the buoy data and ~39% for the SWAN model.  This 
is indicated by the reduction in total wave heights between Table 3 and Table 9 for SWAN data, and Table 4 and 
Table 10 for buoy data. 



7 Power Production Sensitivity Analysis 

Numerical simulations of WEC performance allow developers to better understand WEC motions, PTO dynamics 
and non-linear loading between waves and their devices. Additionally, they mitigate some of the inherent risks 
associated with developing technologies by allowing for rapid analysis of device performance, failure modes and 
iterative performance gains. However, in order to produce the performance matrices for the considered WEC, the 
frequency domain wave spectrum is decomposed or “unpacked” to synthesize a water elevation time-series for 
the ProteusDS model. As a result of the statistical decomposition, the exact time series varies depending on the 
seeding, or phase of each synthesis regular wave system. Given the non-linear power production behaviour of 
many WEC’s, this will affect the estimates of power production within each histogram bin and it is necessary to 
determine the sensitivity of production estimates on wave system seeding. 

  

Figure 6: Cumulative Average Power 

 

Figure 7: Cumulative Standard Deviation 

 

In order to investigate this effect, multiple simulations of the WCWI WEC were performed using a standard 
JONSWAP wave spectrum with a significant wave height 2.75 m and peak wave period of 9.5 seconds. As shown in 
Figure 6, the cumulative average power between the various runs varied dramatically over the first 300 seconds of 
simulation time and the spreading was significantly reduced by the end of the simulation runs. However, the 
cumulative average power does not converge to a consistent average power across all runs. 

The standard deviation in the cumulative average power between the different runs was approximately 16 kW 
(See Figure 7), which represents approximately 13% of the mean cumulative power (125 kW). Assuming a normal 
distribution, this indicates that 32 % of numerical power production estimates, using the same JONSWAP spectrum 
at 2.75m and 9.5 seconds, will predict values below 109 kW or above 141 kW.   

However, when viewing this uncertainty through its effect on annual power production estimates, the effect is 
reduced. For all seastates included in the standard spectral methods histogram, assuming a consistent proportion 
of standard deviation and a normal distribution, the relative standard deviations for the total annual power 
recovery are 2.4% for the both PM and JONSWAP buoy data spectrums. The SWAN resource data features a 2.9% 
and 2.7% total power deviation using a JONSWAP and PM spectrum respectively.  

8 Conclusions and Recommendations 

As the wave energy conversion industry matures, the need for highly resolved estimates of theoretical power 
production cannot be overstated. These estimations allow developers to provide estimated costs per unit power, 
allow utilities to begin planning for reserve costing and allow policy makers to begin estimating the spatial extent 
of the sea activities.  



When performing a wave resource assessment, a variety of different methodologies are currently available to 
characterise and quantify the same fundamental wave energy resource information. Given that these metrics are 
subsequently used predict the power and financial feasibility estimates for individual WEC designs, it is imperative 
to assess the discrepancies between these resource characterization methodologies and the impacts on the final 
predicted power generation from WEC installations. 

Estimated annual wave power production values varied between 301.52 MWhrs and 442.96 MWhrs, a difference 
of 47 %. Obviously, this difference will play a significant role in determining the feasibility of wave energy 
conversion as large scale power generation. 

Generally, the use of buoy data resulted in approximately 5% larger predictions of annual power production when 
compared against SWAN model results. This can be attributed to the inability for numerical wave models to predict 
extreme sea conditions. Additionally, on an annual power production basis, the difference between assumed 
spectral shape and the best fit shape were on the order of 1%. This is less than one standard deviation of the 
power variation, due to the randomized wave phase, so could be considered insignificant. 

Interestingly, the annual power predicted by using regular wave numerical simulations and time-series wave 
analysis provided an annual power production estimate of 426.02 MWhr – on par with spectral methods over the 
same period. This was surprising since it was assumed simulations in regular waves would allow for “perfect” WEC 
motion and increased estimate of power production for each histogram bin. Understanding the non-linear nature 
of the WCWI WEC power production, it is suggested that the periods of increased and decreased power 
production, due to constructive and destructive irregular wave interaction, may negate each other when using an 
annual power production metric. This is certainly not the case for when investigating WEC power production with 
< 1 sec time resolution. 

WEC performance curves indicate that certain WECs are only able to capture wave energy within a certain 
frequency band. Hence, it is suggested that the spectrally partitioned method of characterising the wave climate 
may provide a better estimate of the wave climate, from a WEC developer’s point of view, than the basic 
oceanography methods which have integrated into the TC-114 technical specification. Spectrally partitioning the 
wave spectrum, and only including the wave system with the highest energy content, results in annual power 
production estimates of 309.55 MWhrs and 354.29 MWhrs for SWAN and buoy data inputs respectively. A 
significant reduction when compared against the standard TC-114 methods. 

Additionally, a wave system seeding sensitivity study indicates there is still significant variability in the power 
estimations for individual wave spectrum. The extent of this variability is WEC architecture dependent and is not 
consistent for all devices. Additionally, it should be noted that the presented wave climate resource methodology 
results are not universal and may differ considerably based on geographic location and incident wave climate. 

Finally, it should be noted that there currently is no “gold standard” to determine the accuracy of the differing 
wave resource characterisation methods. This is due to a lack of publically available long-term power production 
data. As a result, the conclusions presented are based on scientific reasoning and detailed numerical analysis of 
device performance and wave climate databases. 
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Appendix A: 

 

Table 14: Wave histogram from zero-crossing analysis of HNE data 

 
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5 28.5 29.5 

0.25 54 98885 231265 485934 177600 126107 85052 92877 22659 14134 13784 3013 1935 1364 1200 268 146 154 7 18 11 18 0 11 0 7 0 0 4 4 

0.75 0 5234 62771 369452 240282 231257 200641 282623 89921 64638 73767 20174 13502 8946 9378 2470 1524 1589 378 207 107 96 11 18 4 4 0 0 4 0 

1.25 0 32 5034 95044 97133 116321 119449 202837 76380 59723 77580 22837 16379 11028 12288 2924 1846 1953 493 253 171 175 50 29 11 21 7 4 0 0 

1.75 0 0 357 19971 30052 44422 54011 109085 47485 41491 59201 19360 14626 10292 11688 2977 2028 2092 550 325 168 243 61 25 46 14 7 0 7 0 

2.25 0 0 25 3802 8861 16650 22263 55439 27407 25004 39845 14102 10810 7968 9560 2560 1767 1806 453 253 161 221 39 39 14 25 0 4 4 0 

2.75 0 0 0 771 2706 6173 9682 27742 15551 14948 24547 9300 7572 5473 7343 1878 1353 1457 311 232 143 111 50 25 11 7 0 0 0 0 

3.25 0 0 0 139 785 2249 4202 13555 8197 8365 14316 5862 4477 3463 4545 1296 825 975 250 154 79 111 29 21 21 18 4 4 7 4 

3.75 0 0 0 25 239 782 1803 6319 4680 4727 8414 3527 2813 2135 3088 775 585 625 218 100 86 96 25 7 11 0 0 4 4 4 

4.25 0 0 0 0 32 268 828 3459 2595 2810 4994 2110 1721 1371 1849 589 400 393 100 71 39 50 0 0 7 0 0 0 4 0 

4.75 0 0 0 0 4 57 257 1667 1299 1510 2970 1128 1017 860 1242 407 196 286 54 46 39 29 7 4 0 7 4 0 0 0 

5.25 0 0 0 4 0 21 121 839 728 942 1749 782 546 528 725 218 161 168 57 32 14 14 0 0 0 0 0 0 0 0 

5.75 0 0 0 0 0 14 36 343 450 475 917 461 318 357 471 157 154 136 18 32 18 0 4 0 0 0 0 0 0 0 

6.25 0 0 0 0 0 14 7 193 246 225 621 293 232 168 307 129 82 79 18 25 4 4 0 0 0 0 0 0 4 0 

6.75 0 0 0 0 0 0 7 104 96 139 389 121 154 121 175 75 57 57 14 14 4 11 0 0 0 0 0 0 0 0 

7.25 0 0 0 0 0 0 4 32 57 71 186 125 75 71 171 46 25 29 11 0 7 4 0 0 0 0 0 0 0 0 

7.75 0 0 0 0 0 0 0 14 32 50 125 36 54 54 89 32 43 36 0 0 4 0 4 0 0 0 0 0 0 0 

8.25 0 0 0 0 0 0 0 0 7 39 64 46 36 57 50 11 18 18 4 0 4 0 0 0 0 0 0 0 0 0 

8.75 0 0 0 0 0 0 0 7 4 14 54 18 25 25 25 14 11 7 0 4 0 4 0 0 0 0 0 0 0 0 

9.25 0 0 0 0 0 0 0 0 4 11 18 7 7 7 11 14 7 11 0 0 4 0 0 0 0 0 0 0 0 0 

9.75 0 0 0 0 0 0 0 0 7 4 0 7 0 0 18 4 14 4 0 0 0 0 0 0 0 0 0 0 0 0 

10.25 0 0 0 0 0 0 0 4 0 0 4 7 4 4 4 0 4 7 0 0 0 0 0 0 0 0 0 0 0 0 

10.75 0 0 0 0 0 0 0 0 0 0 0 4 0 4 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11.25 0 0 0 0 0 0 0 0 0 4 7 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 

13.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 


